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In this paper we continue the analytical study of the sabra shell model of energy turbulent cascade. We prove
the global existence of weak solutions of the inviscid sabra shell model, and show that these solutions are
unique for some short interval of time. In addition, we prove that the solutions conserve energy, provided that
the components of the solution satisfy �un � �Ckn

−1/3��n log�n+1��−1 for some positive absolute constant C,
which is the analog of the Onsager’s conjecture for the Euler’s equations. Moreover, we give a Beal-Kato-
Majda type criterion for the blow-up of solutions of the inviscid sabra shell model and show the global
regularity of the solutions in the “two-dimensional” parameters regime.
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I. INTRODUCTION

Shell models of turbulence have attracted interest as
useful phenomenological models that retain certain features
of the Navier-Stokes and Euler equations. Their central
computational advantage is the parametrization of the fluc-
tuation of a turbulent field in an octave of wave numbers
�n� �kn � ��n+1 by very few representative variables. This
range of wave numbers is called a shell and the variables
retained are called shell variables. Like in the Fourier repre-
sentation of Navier-Stokes equations �NSE�, the time evolu-
tion of the shell variables is governed by an infinite system
of coupled ordinary differential equations with quadratic
nonlinearities, with forcing applied to the large scales and
viscous dissipation effecting the smaller ones. Because of the
very reduced number of interactions in each octave of wave
numbers, the shell models are a drastic modification of the
original NSE in Fourier space.

The main objective of this work is to investigate the ques-
tion of existence, uniqueness, and regularity of solutions of
the inviscid sabra shell model of turbulence. This model was
introduced in �1� and its viscous version was studied analyti-
cally in �2�. It is worth noting that the results of this paper
apply equally well to the well-known Gledzer-Okhitani-
Yamada �GOY� shell model, introduced in �3�. For other
shell models see, e.g., �4–6�. A recent review of the subject
emphasizing the applications of the shell models to the study
of the energy-cascade mechanism in turbulence can be found
in �7�.

The sabra shell model of turbulence describes the evolu-
tion of complex Fourier-like components of a scalar velocity
field denoted by un. The associated one-dimensional
wave numbers are denoted by kn, where the discrete index n
is referred to as the “shell index.” The equations of motion
of the viscous sabra shell model of turbulence have the
following form:

dun

dt
= i�akn+1un+2un+1

* + bknun+1un−1
* − ckn−1un−1un−2� − �kn

2un

+ fn, �1�

for n=1,2 ,3 , . . ., and the boundary conditions are
u−1=u0=0. The wave numbers kn are taken to be

kn = k0�n, �2�

with ��1 being the shell spacing parameter, and k0�0. Al-
though the equation does not capture any geometry, we will
consider L=k0

−1 as a fixed typical length scale of the model.
In an analogy to the NSE ��0 represents a kinematic
viscosity and fn are the Fourier components of the forcing.

The choice of the nonlinear term in the equation of the
sabra model �1� which contains only the local interaction
between the shells, can be justified in the context of the
Kolmogorov theory of homogeneous turbulence �see �6,8��.
The theory states that there is no interchange of energy be-
tween the modes of the velocity field with wave numbers
separated at least by “an order of magnitude.”

The three parameters of the model a ,b, and c are real. In
order for the sabra shell model to be a system of the hydro-
dynamic type we require that in the inviscid ��=0� and un-
forced �fn=0, n=1,2 ,3 , . . .� case the model will have at least
one quadratic invariant. Requiring conservation of the energy
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E = �
n=1

�

�un�2 �3�

leads to the following relation between the parameters of the
model, which we will refer to it as the energy conservation
condition:

a + b + c = 0. �4�

Moreover, in the inviscid and unforced case the model
possesses �formally� another quadratic invariant

W = �
n=1

� �a

c
	n

�un�2. �5�

The “physically” relevant range of parameters is
�a /c � �1 �see �1� for details�. For −1�

c
a �0 the quantity W

is not sign-definite and therefore it is common to associate it
with the helicity—in an analogy to the three-dimensional
�3D� turbulence. In that regime we can rewrite the relation
�5� in the form

W = �
n=1

�

�− 1�nkn
��un�2, �6�

for

� = log�
a

c

 . �7�

We call the parameters regime corresponding to 0�
c
a �1 the

two-dimensional �2D� regime. This is because in that case
the second conserved quadratic quantity W is non-negative
and can be identified with the enstrophy in 2D turbulent
flows. We can rewrite the expression �5� in the form

W = �
n=1

�

kn
��un�2, �8�

where � is also defined by Eq. �7�.
For the parameters satisfying a

c =−� the sabra shell model
becomes “purely three-dimensional,” where the quantity �5�
scales like the helicity in the 3D Navier-Stokes turbulence. It
was found �see �10�� that in that case the energy spectrum in
the inertial range of the GOY shell model �this is also true
for the sabra model� has the traditional Kolmogorov scaling
law kn

−5/3. Moreover, while the parameters of the model sat-
isfy a

c =�2, the quantity �6� scales like the enstrophy in the
Navier-Stokes 2D turbulence. Therefore these parameters
values are usually referred as the “purely two-dimensional”
regime. In that case the energy spectrum of the sabra shell
model �see �9,10�� obeys the scaling law kn

−3, which is
exactly the Kraichnan’s law of the 2D developed turbulence.

The famous question of global well-posedness of the 3D
Navier-Stokes and Euler equations is a major open problem.
In �2� we showed global regularity of weak and strong solu-
tions of Eq. �1� and smooth dependence on the initial data for
the case ��0. In this work we address the question of exis-
tence of regular solutions of the inviscid ��=0� sabra shell
model �1�. First, we prove the global in time existence of
weak solutions with finite energy. Similar results for the in-

viscid GOY shell model were obtained recently in �11�. The
existence of weak solutions for inviscid hydrodynamic equa-
tions with only energy conservation is not known. The only
other analog of the 3D Euler equations known to possess
weak solutions of such type is the inviscid surface quasigeo-
strophic equation �see �12� and �13��. Next, we show that
every weak solution u�t�(u1�t� ,u2�t� , . . . ) conserves the en-
ergy provided that the components of the solution satisfy the
decay estimate

�un� � Ckn
−1/3��n log�n + 1��−1,

for some positive absolute constant C, namely, provided it is
regular enough. A similar result for the solutions of Euler
equations is known as the Onsager’s conjecture �see �14��
and it was proved in �15� �see also �16,17��. We also give the
criteria for the weak solutions to remain unique in certain
regularity class.

Next, we show that if the initial data is sufficiently
smooth, then the weak solutions are smooth and unique for a
short period of time. Similar results were obtained in the
context of other discrete models of Euler equations �see, e.g.,
�18–21��. The well-known Beale-Kato-Majda theorem �see
�22,23�� gives a criterion for the blow-up of the initially
smooth solutions of the 3D Euler equations. In Sec. V we
establish a similar criterion for the inviscid sabra shell model
equations and use it to show the global regularity of the
solutions of the model in the 2D parameters regime. This
picture is consistent with what is known about the global
regularity of solutions of the 2D Euler equations �see, e.g.,
�23–27�, and references therein�.

Analytic and numerical study of loss of regularity of so-
lutions of the inviscid sabra shell model of turbulence, as
well as the dissipation anomaly phenomena in that model,
are the subject of ongoing research �28�.

II. PRELIMINARIES AND FUNCTIONAL SETTING

We repeat here for the sake of self-consistency the func-
tional settings introduced in Sec. II of �2�. In particular, the
Proposition 1 is a slightly more generalized version of the
Proposition 1 of �2�.

Following the classical treatment of the NSE and Euler
equations, and in order to simplify the notation we are going
to write the system �1� in the following functional form:

du

dt
+ �Au + B�u,u� = f , �9a�

u�0� = uin, �9b�

in a Hilbert space H. The linear operator A as well as the
bilinear operator B will be defined below. In our case, the
space H will be the sequences space �2 over the field of
complex numbers C. For every u ,v�H, the scalar product
�· , · � and the corresponding norm � · � are defined as
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�u,v� = �
n=1

�

unvn
*, �u� = ��

n=1

�

�un�2	1/2

.

We denote by �� j� j=1
� the standard canonical orthonormal ba-

sis of H, i.e., all the entries of � j are zero except at the place
j it is equal to 1.

The linear operator A :D�A�→H is a positive definite, di-
agonal operator defined through its action on the elements of
the canonical basis of H by

A� j = kj
2� j ,

where the eigenvalues kj
2 satisfy Eq. �2�. The space

D�A� = 
u � H:�Au�2 = �
n=1

�

kn
4�un�2 � � �

is the domain of A and is a dense subset of H. Moreover, it is
a Hilbert space, when equipped with the graph norm

�u�D�A� = �Au�, ∀ u � D�A� .

Using the fact that A is a positive definite operator, we can
define the powers As of A for every s�R

∀u = �u1,u2,u3, . . . �, Asu = �k1
2su1,k2

2su2,k3
2su3, . . . � .

Furthermore, we define the spaces

Vs: = D�As/2� = 
u = �u1,u2,u3, . . . �:�
j=1

�

kj
2s�uj�2 � � � ,

�10�

which are Hilbert spaces equipped with the scalar product

�u,v�s = �As/2u,As/2v�, ∀ u,v � D�As/2� ,

and the norm �u�s
2= �u ,u�s, for every u�D�As/2�. Clearly

Vs � V0 = H � V−s, ∀ s � 0.

Note that the dual space of Vs, for every s�R, is Vs�=V−s.
We denote the action of the element in u�V−s on v�Vs by

�u,v�s = �A−s/2u,As/2v� = �
n=1

�

unvn
*.

The case of s=1 is of a special interest for us. We denote
V=D�A1/2� a Hilbert space equipped with a scalar product
and norm

„�u,v�… = �A1/2u,A1/2v�, � u�2 = „�u,v�… ,

for every u ,v�V. The action of the element u�V−1=V� on
v�V is denoted by

�u,v� = �A−1/2u,A1/2v� = �
n=1

�

unvn
*.

Before proceeding and defining the bilinear term B, let us
introduce the sequence analog of Sobolev functional spaces.

Definition 1. For 1� p�� and m�R we define sequence
spaces

wm,p: = 
u = �u1,u2, . . . �: � Am/2u�p

= ��
n=1

�

�kn
m�un��p	1/p

� � � ,

for 1� p��, and

wm,�: = �u = �u1,u2, . . . �: � Am/2u�� = sup
1�n��

�kn
m�un�� � � � .

For u�wm,p we define its norm

�u�wm,p = � Am/2u�p,

where � · �p is the usual norm in the �p sequence space. The
special case of p=2 and m	0 corresponds to the sequence
analog of the classical Sobolev space, which we denote by

hm = wm,2.

Those spaces are Hilbert with respect to the norm defined
above and its corresponding inner product.

The above definition immediately implies that hd=Vd, for
all d. Moreover, Vd�wd,� and the inclusion map is continu-
ous because

�u�wd,� = � Ad/2u�� � � Ad/2u�2 = �u�d.

The bilinear operator B�u ,v� will be defined formally in
the following way. Let u ,v�H be of the form u=�n=1

� un�n
and v=�n=1

� vn�n. Then

B�u,v� = − i�
n=1

�

�akn+1vn+2un+1
* + bknvn+1un−1

* + akn−1un−1vn−2

+ bkn−1vn−1un−2��n, �11�

where here again u0=u−1=v0=v−1=0. It is easy to see
that our definition of B�u ,v� together with the energy
conservation condition �4� imply that

B�u,u� = − i�
n=1

�

�akn+1un+2un+1
* + bknun+1un−1

*

− ckn−1un−1un−2��n,

which is consistent with Eq. �1�. In �2� we showed that in-
deed our definition of B�u ,v� makes sense as an element of
H, whenever u�H and v�V or u�V and v�H. The next
Proposition is a slightly generalized version of Proposition 1
of �2�.

Proposition 1.

�i� For all d ,s ,
�R and for all u�Vd−
+s, v�Vd−
−s,
and w�w1+2
,�

��AdB�u,v�,w�1+2
� � Cd,s,
 � w�w1+2
,��A�d−
+s�/2u��A�d−
−s�/2v� ,

�12�

where

Cd,s,
 = ��a���1−3d+3
+s + �−�1−3d+3
+s��

+ �b���2s + �−�1−3d+3
−s��� . �13�
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�ii� For all d ,s ,
�R and for all w�Vd−
+s, v�Vd−
−s,
and u�w1+2
,�

��AdB�u,v�,w�d−
+s� � cd,s,
 � u�w1+2
,��A�d−
+s�/2w��A�d−
−s�/2v� ,

�14�

where

cd,s,
 = ��a���−�2d−2s� + �2d−2s� + �b���1+d−3
−s + �1+d+3
−s�� .

�15�

�iii� For every d ,s�R, the operator B :V2d−2s�V1+2s
→V2d and B :V1+2s�V2d−2s→V2d is bounded and

�AdB�u,v�� � 
cd,s−d,s � u�w1+2s,��Ad−sv� ,

Cd,s,−1/2�A�d+s�/2+1/4u��A�d−s�/2+1/4v� ,
�16�

where the constant Cd,s,
 and cd,s,
 were defined in Eqs. �13�
and �15�.

�iv� For every u�Vd, v�V1−2d, for all d�R,

�B�u,v�,u�d = − �B�u,u�,v�1−2d
* , �17�

and

Re�B�v,u�,u�d = 0. �18�

Proof. To prove the inequality �i�, we write

��AdB�u,v�,w�1+2
� = 
�
n1

�

�akn+1kn
2dvn+2un+1

* wn
* + bkn

2d+1vn+1wn
*un−1

* + akn
2dkn−1wn

*un−1vn−2 + bkn
2dkn−1wn

*vn−1un−2�

� �

n=1

�

�a�1−3d+3
+skn+2
d−
−svn+2kn+1

d−
+sun+1
* kn

1+2
wn
*� + �b�2skn+1

d−
−svn+1kn
1+2
wn

*kn−1
d−
+sun−1

* �

+ �a�−�1−3d+3
+s�kn
1+2
wn

*kn−1
d−
+sun−1kn−2

d−
−svn−2� + �b�−�1−3d+3
−s�kn
1+2
wn

*kn−1
d−
−svn−1kn−2

d−
+sun−2�

� Cd,s,
 � w�w1+2
,��A�d−
+s�/2u��A�d−
−s�/2v� .

In the same way we prove the inequality in �ii�.
In order to prove the statement �iii� we apply Eq. �14� to

obtain the first inequality

�AdB�u,v�� = sup
�w�=1

�„AdB�u,v�,w…�

� sup
�w�=1

cd,s−d,s � u�w1+2s,��w��Ad−sv�

� cd,s−d,s � u�w1+2s,��Ad−sv� .

The second inequality is proved similarly.
Finally, the statements �iv� follow directly from the

definition of the bilinear operator B�u ,v�, the energy
conservation condition �4�, and the inequality �12�. �

III. WEAK SOLUTIONS OF THE INVISCID SHELL
MODEL

Let us consider the inviscid sabra shell model problem

du

dt
+ B�u,u� = f , �19a�

u�0� = uin. �19b�

One of the main properties of the sabra shell model of tur-
bulence is the locality of the nonlinear interaction. This prop-
erty allows us to prove the global existence of weak solu-
tions with the finite energy to the inviscid shell model in the
following sense. Similar results in the context of the GOY

shell model with the stochastic forcing were obtained
recently in �11�. In particular, it was shown there that as
�→0, there exists a subsequence of certain weak solutions
of the viscous shell model converging to the weak solution of
the inviscid problem, which is also true in our case. In the
rest of the section we give the sufficient criteria for the weak
solutions to conserve the energy, and investigate the question
of the uniqueness of weak solutions.

Definition 2. Let 0�T��, then u�t�
�L���0,T� ,H��C��0,T� ,Hw� is called a weak solution of
the system �19� on the interval �0,T� if for every 0� t�T it
satisfies

�u�t�,v� + �
0

t

�B„u�s�,u�s�…,v�ds = �uin,v� + �f ,v� , �20�

for every v�V.
Observe that if u�t�= (u1�t� ,u2�t� ,u3�t� , . . . ), then

u�C��0,T� ,Hw� is equivalent to un�t��C��0,T� ,C�, for
every n=1,2 ,3 , . . ..

Theorem 1. Let uin , f �H, then for every 0�T�� a weak
solution

u�t� � L���0,T�,H� � C��0,T�,Hw� , �21�

in the sense of Definition 2 exists. In addition,

du�t�
dt

� L���0,T�,V−1� . �22�

Proof. Let us fix m�1. Denote by Pm the orthogonal
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projection in H onto the first m coordinates and Qm= I− Pm.
The Galerkin approximating system of order m for Eq. �19�
is an m-dimensional system of ordinary differential equations

dum

dt
+ PmB�um,um� = Pmf , �23a�

um�0� = Pmuin. �23b�

First observe that the nonlinear term of Eqs. �23� is quadratic
in um. Therefore, by the theory of ordinary differential equa-
tions, the system �23� has a unique solution on some finite
time interval �0,Tm

* �. Let us now take the inner product of
both sides of Eq. �23a� with um and using subsequently in-
equality �18� of Proposition 1 and the Cauchy-Schwartz
inequality we get

1

2

d

dt
�um�2 = �Pmf ,um� � �Pmf ��um� � �f ��um� , �24�

from which we conclude that

�um�t�� � �um�0�� + �f �t � �uin� + �f �t . �25�

Therefore um is finite in the H norm for all t��, hence we
can extend the solution of the problem �23� to all t� �0, � �.

Let us fix 0�T��. Then, from the relation �25� we may
conclude that

sup
0�t�T

�un
m�t�� � C

for some constant C�0 depending only on uin , f , and T.
Moreover, writing Eq. �23a� in the componentwise form

un
m�t� = un

m�0� + �
0

t

i�akn+1un+2
m �un+1

m �* + bknun+1
m �un−1

m �*

+ akn−1un−1
m un−2

m + bkn−1un−1
m un−2

m �ds + fn. �26�

For 0� t�T, we get that for every n there exists a constant
Cn, independent of m, such that

�un
m�C1��0,T�,C� � Cn.

Applying the Arzela-Ascoli theorem we conclude that for

every n there exists a subsequence �mk
n�k	1 such that un

mn
k

converges uniformly to some un, as k→�. Moreover, by a
diagonalizing procedure we can choose a sequence �mk�k	1,
independent of n such that un

mk converges uniformly to
un�C��0,T� ,C� and we denote

u�t� = „u1�t�,u2�t�,u3�t�, . . . … .

Using the uniform convergence it is easy to show, passing to
the limit in the expression �26�, that u�t� satisfies the weak
form of the sabra shell model equation in the form

�u�t�,vn� + �
0

t

�B„u�s�,u�s�…,vn�ds = �uin,vn� + �f ,vn� ,

�27�

for every vn�H with the finite number of components
different from zero.

Moreover, we need to show that u�t��L���0,T� ,H�. The
sequence �um�m	1 is uniformly bounded in H �see Eq. �25��,
and hence

um is bounded in every Lp��0,T�,H�, for 1 � p � � .

�28�

Therefore we conclude that there exists a subsequence
�mk�k	1 such that umk converges to w�t� in the weak-* topol-
ogy of L���0,T� ,H�, and by definition it is not hard to see
that the limiting function is indeed w�t��u�t�. In addition,
by the inequality �iii� of Proposition 1, we get

�B�u,u��−1 = �A−1/2B�u,u�� � C�u�2,

for C=C−1/2,0,−1/2 �see Eq. �13��, concluding that B�u ,u�
�L���0,T� ,V−1�.

Finally, let v�V, and vn= Pnv, with the finite number of
components being different from zero, converging strongly
to v. Then letting n→� in the relation �27� we conclude that
u�t� satisfies Eq. �19� in the weak sense of Definition 2. �

The next Theorem gives a partial answer to the question:
under which conditions do the weak solutions conserve the
energy?

Theorem 2. Let u�t� be a weak solution, whose existence
is proved in Theorem 1, satisfying

u�t� � L���0,T�,V1/3� , �29�

for some T�0. Then for every t� �0,T�

�u�t��2 = �uin�2 + �
0

t

„f ,u�s�…ds . �30�

Proof. If a weak solution satisfies Eq. �29�, then according
to the inequality �iv� of Proposition 1, Eq. �19� can be
considered as the equation in the space V−1/3. Applying the
operator A−1/3 to both sides of Eq. �19� and taking an inner
product with A1/3u�t� in the space H we get, using the
identity �iv� of Proposition 1,

1

2

d

dt
�u�t��2 = „f ,u�t�… ,

from which the statement follows. �
As we already mentioned in the Introduction, our result

for the sabra shell model of turbulence is reminiscent of On-
sager’s conjecture for the Euler equations �see �14–17��.
However, the criterion given by Theorem 2 is not sharp. It is
easy to give an example of a solution of the inviscid sabra
shell model of turbulence, which stays merely in H, but still
conserves the energy. To see this, consider the forcing f
= �f1 , f2 , . . . �, where

fn = �1

n
, n = 1,3,6, . . . ,

0, o/w .

Then solution u�t�= (u1�t� ,u2�t� , . . . ), where un�t�= t
n , for

n=1,3 ,6 , . . ., is a weak solution of the sabra shell model,
corresponding to the zero initial condition. The function u�t�
is only in H for every t��, however, it is easy to see that it
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conserves the energy. Clearly, this example is pathological in
a sense that all nonlinear interactions are absent due to the
wide gaps between the excited modes, however, it shows that
the result of Theorem 2 is not sharp. Moreover, it is not
known when the weak solutions of the inviscid sabra shell
model dissipate energy. These questions will be studied in
the forthcoming work �28�.

The final result of this section gives criterions for the
uniqueness of weak solutions.

Theorem 3.

�i� Let u�t� ,v�t� be two weak solutions, whose existence
is proved in Theorem 1, satisfying

u�t�,v�t� � L1��0,T�,w1,�� , �31�

for some T�0, and u�0�=v�0�. Then u�t�=v�t�, for all
t� �0,T�.

�ii� If u�t� ,v�t� are two weak solutions, satisfying

u�t� � L1��0,T�,w1,�� � L���0,T�,V1/3� , �32�

and

v�t� � L���0,T�,V1/3� , �33�

for some T�0, with u�0�=v�0�. Then u�t�=v�t�, for all
t� �0,T�.

Proof. First, let u ,v�L1��0,T� ,w1,�� be two weak solu-
tions of the inviscid sabra shell model with the same initial
conditions. Denote w=u−v satisfying

dw

dt
+ B�u,w� + B�w,v� = 0,

with w�0�=0. Using the fact that u ,v, and w satisfy Eqs. �22�
and �21�, we are allowed to apply the operator A−1/2 to both
sides of the last equation and then take the inner product of
both sides with w in H to conclude

1

2

d

dt
�A−1/4w�2 � �„A−1/2B�u,w�,w…� + �„A−1/2B�w,v�,w…�

= �„A−1/2B�u,w�,w…� + �„B�w,A−1/2w�,v…�

� C1��v�w1,� + � u�w1,���A−1/4w�2, �34�

where we subsequently used parts �iv�, �i�, and �ii� of Propo-
sition 1 and C1=C−1/2,−1/2,0+c−1/2,0,0. Applying Gronwall’s
inequality to Eq. �34� we get

�A−1/4w�t��2 � �A−1/4w�0��2eC1�0
t ��v�s��w1,�+�u�s��w1,��ds,

for t� �0,T�, concluding the proof of part �i�.
To prove part �ii� of the theorem, let u�t� be the solution

of the inviscid sabra shell model satisfying Eq. �32�. Let v�t�,
satisfying Eq. �33�, be another weak solution with the same
initial data v�0�=u�0�. Note that, in particular, both u�t� and
v�t� conserve the energy, according to Theorem 2. Denote
w=u−v satisfying

dw

dt
+ B�u,w� + B�w,u� + B�w,w� = 0, �35�

with w�0�=0. Just as in the proof of Theorem 2, we can
consider Eq. �35� as an equation in the space V−1/3. There-
fore, applying the operator A−1/3 to both sides of Eq. �19�,
and taking an inner product with A1/3w�t� in the space H we
get, using the parts �i� and �iv� of Proposition 1,

1

2

d

dt
�w�2 � ��B�w,u�,w�1/3� � C2 � u�w1,��w�2,

for C2=C0,0,0. It follows that

�w�t��2 � �w�0��2eC2�0
t �u�s��w1,�ds,

for t� �0,T�, finishing the proof of the theorem. �

IV. THE SHORT-TIME EXISTENCE AND UNIQUENESS
OF STRONG SOLUTIONS

The uniqueness of the weak solutions, whose existence
was proved in Theorem 1, is not known. In this section we
prove that the weak solutions of the inviscid case sabra shell
model are unique as long as they stay smooth enough, at
least on the short-time interval �0,T*�, where the time T*

depends on the parameters of the problem �a ,b ,c ,k0, and ��,
as well as the initial data uin and f . Let us consider the
inviscid sabra shell model problem �19� as an ordinary dif-
ferential equation �ODE� in the Hilbert space Vd, for d	1.
The main theorem of this section shows the short time exis-
tence and uniqueness of solutions of Eq. �19�.

Theorem 4. Let uin�Vd and f �Vd for some d	1.

�i� There exists a time T�0, such that the inviscid
problem �19� has a unique solution u�t� satisfying

u�t� � C1
„�− T,T�,Vd… .

�ii� Moreover, if f �V2d−1, then

du

dt
� C„�− T,T�,V2d−1… .

�iii� The unique solution to the inviscid sabra shell model
�19� either exists globally in time, or there exists a maximal
positive time of existence T*�0 such that

u�t� � C1��0,T*�,Vd� ,

and

lim sup
t→T*

−
�u�t��d = � .

A similar statement can be formulated for the maximal nega-
tive time of existence.

In our notation C1(�−T ,T� ,Vd) denotes continuously dif-
ferentiable functions on the interval �−T ,T� with values in
Vd. Our proof is based on the classical Picard theorem for
ODEs in Banach spaces �see, for example, �23,29,30��.

Proof. �Of Theorem 4�
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Let us write the system �19� in the form

du

dt
= F�u�, u�0� = uin, �36�

where F�u�= f −B�u ,u�. Fix d	1, then according to part
�iii� of Proposition 1 the operator B�u ,u� maps Vd into
V2d−1�Vd. Hence the mapping F�u� maps Vd into itself.
Moreover, for every u ,v�Vd we have the following
estimates:

�F�u� − F�v��d = �B�u,u� − B�v,v��d � �B�u − v,u��d
+ �B�v,u − v��d � C3��u � + � v � ��u − v�d,

where the last inequality follows from relation �16�, and C3
=cd/2,−1/2,�d−1�/2+cd/2,−d/2,0�0 �see Eq. �15��. Therefore, we
conclude that the mapping F�u� is locally Lipschitz continu-
ous, and we are able to apply the Picard theorem, completing
the proof.

Part �iii� follows by the straightforward application of
classical theory of ODEs. To prove part �ii� we apply in-
equality �16� to both sides of Eq. �19�. �

Using part �iii� of Theorem 4 we will be able in Sec. V to
derive a criterion for the blow-up of the solutions of the
inviscid sabra shell model and to prove the global �in time�
existence of the unique, regular solutions in the particular
case of the 2D regime of the inviscid sabra shell model.

V. A BEALE-KATO-MAJDA TYPE RESULT

The Beale-Kato-Majda theorem �see �22,23�� states, citing
the original paper, “if a solution of the Euler or Navier-
Stokes equations is initially smooth and loses its regularity at
some later time, then the maximum vorticity necessarily
grows without bound as the critical time approaches.” More
precisely, if the initially smooth solution of the Euler equa-
tions cannot be continued beyond the time T*, and T* is the
first such time, then

lim
t→T*−

�
0

t

� ��· ,s��L�ds = � ,

where �=curl v is the vorticity and v is the velocity field of
the Euler equations.

Our goal in this section is to derive a similar criterion for
the loss of regularity of the solutions of the inviscid sabra
shell model. Note that in our case, the analog of the L� norm
of the vorticity would be the �� norm of the velocity
“derivative,” namely

�u�w1,� = sup
1�n��

kn�un� .

Clearly, if this quantity becomes infinite at some finite mo-
ment of time, then all higher norms, namely �u�d, for d	1,
become unbounded at the same time. However, in the spirit
of the Beale-Kato-Majda result for the Euler equations, we
show that the opposite is also true. In other words, we show
that if a regular solution u�t� of the inviscid shell model
problem loses its regularity for the first time at the time T,
then

�
0

t

� u�s��w1,�ds → � , as t → T−.

For simplicity we would like to focus on the inviscid
sabra shell model problem �19� without forcing

du

dt
+ B�u,u� = 0, �37a�

u�0� = uin�x� . �37b�

Theorem 5. Let uin�Vd, for some d	1. Let
u�t��C1��0,T*� ,Vd� be the solution of the inviscid shell
model equation �37�, where T* is its maximal positive time
of existence. Then, either T*=� or

lim
t→T*

−
�

0

t

� u�
��w1,�d
 = � ,

and hence

lim sup
t→T*

−
� u�t��w1,� = � .

Proof. Let us fix d	1 and consider u�t�—the unique so-
lution to the sabra shell model equation �37�. According to
part �ii� of Theorem 4, both sides of Eq. �37a� lie in the space
V2d−1. Therefore we are allowed to apply the operator Ad/2 to
both sides of the equation and take the inner product in H
with Ad/2u�H. After taking the real part we obtain

1

2

d

dt
�u�d

2 = Re„Ad/2B�u,u�,Ad/2u…

= − Im�
n=1

�

�akn+1kn
2dun+2un+1

* un
* + bkn

2d+1un+1un
*un−1

*

+ akn
2dkn−1un

*un−1un−2 + bkn
2dkn−1un

*un−1un−2�

= Ed Im�
n=2

�

kn
2d+1un+1un

*un−1
* , �38�

which we denote by

Ed = a��2d − �−2d� + b��2d − 1� . �39�

Applying Cauchy-Schwarz inequality to Eq. �38� we get

d

dt
�u�d

2 � 2�Ed� � u�w1,��u�d
2,

which is valid for t� �0,T�, and for every T�T*. Using
Gronwall’s inequality we conclude

�u�t��d � �u�0��de�Ed��0
T�u�
��w1,�d
. �40�

The Theorem follows after letting T→T*
− in the last

inequality. �

VI. THE “TWO-DIMENSIONAL” REGIME

Recall that for the range of parameters satisfying
0�c /a�1, corresponding to the “two-dimensional” regime,
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the sabra shell model possesses two different positive qua-
dratic invariants, one is associated with the energy and the
second is associated with the enstrophy in the analogy with
the 2D Euler equation �see �9��

W = �Ad0/2u� = �u�d0
, �41�

where

d0 =
1

2
log��a

c
	 . �42�

In this case Ed0
, defined in Eq. �39�, equals 0. Moreover, if

d0	1, the following inequality holds:

�u�w1,� � �u�d0
,

for every u�Vd0
. From the relation �42� we conclude that the

condition d0	1 corresponds to the case when parameters of
the inviscid sabra shell model satisfy

0 �
c

a
� �−2. �43�

It is well-known that the Euler equations of the ideal in-
compressible fluid in 2D possess a global in time, unique,
regular solution �see, for example, �23–27,31��. The same
statement is true for the inviscid shell model of turbulence,
namely.

Corollary 1. �Global Existence� Let d0 be defined by the
relation �42�.

�i� Let the parameters a, c, and � of the inviscid sabra
shell model �37� satisfy

c

a
� �−2.

Then for uin�Vd0
, there exists a weak solution u�t� to the

inviscid problem �37� satisfying

u�t� � L�
„�− � , � �,Vd0

… .

�ii� The weak solution u�t� conserves the enstrophy �41�,
for all t� �0,T�, provided

u�t� � L���0,T�,V�1−2d0�/3� .

�iii� If the parameters a, c, and � of the inviscid
sabra shell model �37� satisfy the relation �43�, then for
uin�Vs, s	d0, there exists a unique global solution u�t� to
the inviscid problem �37� satisfying

u�t� � C1
„�− � , � �,Vs… .

The proof of part �i� of Corollary 1 is essentially the same
as the proof of Theorem 1. The proof of part �i� is similar to
that of Theorem 2, and part �iii� follows from the criterion,
proved in Theorem 5.

The comprehensive numerical study of the shell model of
turbulence in the 2D parameters regime was performed in �9�
for the sabra model, and previously in �10� for the GOY
model. In particular, it showed that parameters setting de-
fined by relation �43� corresponds to the enstrophy and en-

ergy equipartition across the inertial range. Therefore our
rigorous result on existence of the solutions of the inviscid
shell model �37� globally in time supports these findings.

It was also found numerically that for the parameters sat-
isfying c

a ��−2, the shell models exhibit the direct enstrophy
cascade in the inertial range and the energy distribution
becomes close to the Kraichnan’s dimensional prediction

��un�2� � kn
−2/3�1+log��a/c��,

with small corrections, for nf �n�nd, where nf is the larg-
est wave number of the forcing and nd is the Kraichnan’s
dissipation wave number �see �10��. Note that for c

a =�−2 this
estimate exactly coincides with the well-known prediction
kn

−3 for the energy spectrum of the 2D developed turbulence
�see �32��. Using these reasonings we conclude that for

c

a
� �−2, �44�

the inertial range of the sabra shell model with nonzero vis-
cosity will scale like ��un�2��kn

−2+�, for some positive �.
Therefore it is natural to expect that if the viscosity tends to
zero, or equivalently, the dissipation scale nd tends to infinity,
the solutions of the inviscid sabra shell model, for param-
eters satisfying relation �44�, will blow-up in finite time, for
some initial conditions, according to the criterion proved in
Theorem 5.

VII. CUBIC INVARIANT AND HAMILTONIAN
STRUCTURE

In practical numerical simulations of the sabra shell
model one is limited to consider a truncated model of N
equations, setting un=0, for n=N+1,N+2, . . .. It was shown
in �33� that such a finite system in the inviscid and unforced
case possesses a Hamiltonian structure for a specific value of
the parameters. In this section we will state, based on our
results on the existence of the solutions of the inviscid sabra
shell model, that the infinite system of equations also has a
Hamiltonian structure.

By rescaling the time and taking into account the energy
conservation assumption �4�, we will assume that

a = 1, b = − �, c = � − 1.

Let us fix �= ��5−1� /2—the golden mean satisfying
�2=1−�. In that case we can rewrite Eqs. �1� in the equiva-
lent form

dun

dt
= ikn+1�un+2un+1

* −
�

�
un+1un−1

* +
�2

�2un−1un−2	 − �kn
2un

+ fn, �45�

for n=1,2 ,3 , . . .. In that case the inviscid sabra shell model
without forcing has, formally, a cubic invariant of the form

I = �
n=1

�

�k0�−
�

�
	n

�un+1
* unun−1 + c.c.� , �46�

where c.c. stands for complex conjugate.
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Following the method of �33�, we perform the following
change of variables:

an =
un

�n/2 , for even n ,

and

an = −
un

*

�n/2 , for odd n .

The modified equations then take the form of

dan

dt
= − ik0������n����an+2an+1 + an+1

* an−1 +
1

���
an−1

* an−2	 ,

�47�

for n=1,2 ,3 , . . .. Finally, the Hamiltonian takes the form

H = �
n=1

�

Hn, �48�

where

Hn = �k0�����n�an+1anan−1
* + c.c.� . �49�

In order to see that H is indeed a Hamiltonian we note that

dH
dt

= 0,

and the equations of motion �47� satisfy

dan

dt
= − i

�H
�an

* ,
dan

*

dt
= i

�H
�an

.

Both the cubic invariant I and the Hamiltonian H are
defined by infinite sums. Therefore it is natural to ask when
those definitions make sense, namely when the sums
converge.

Lemma 1. For �2	�−1 the Hamiltonian �48� is well-
defined for all u�V.

Proof. The Lemma follows by a simple application of
Hölder inequality. �

Finally, we can conclude the following.
Corollary 2. Let the parameters of the inviscid sabra shell

model �37� satisfy

a = 1, b = −
�5 − 1

2
, c =

�5 − 3

2
, �2 	

2
�5 − 1

.

Then the inviscid sabra shell model �37� with initial data in
Vd, for d	1, is a Hamiltonian system with the Hamiltonian
defined by relation �48�, as long as a solution of the model
exists.

VIII. CONCLUSIONS

In this work we continued the analytic study of the shell
models of turbulence, initiated in �2�. We established the
global existence of weak solutions and showed that strong

solutions remain regular and unique for some short period of
time. Moreover, we showed that the solutions for the “two-
dimensional” range of parameters remain regular and unique
globally in time. In addition, we established a Beale-Kato-
Majda type criterion for the blow-up of the initially smooth
solutions.

We showed that for some parameter regime the sabra
shell model is an infinite dimensional Hamiltonian system.
In contrast to the Euler equations, which possess a quadratic
Hamiltonian function �see, for example, �34,35��, the
Hamiltonian of the inviscid sabra shell model is cubic.

We showed that the weak solution u�t�= (u1�t� ,u2�t� , . . . )
conserve the energy provided that the components of the
solution satisfy

�un� � Ckn
−1/3��n log�n + 1��−1

for some positive absolute constant C. A similar result for the
Euler equations is known as the Onsager’s conjecture
�see �14�� and it was proved in �15� �see also �16,17��. The
question of whether less regular solutions dissipate energy
remains open.

The question of the possible loss of regularity and unique-
ness for the initially smooth solutions of the inviscid sabra
shell model outside of the “two-dimensional” range of
parameters still remains open.

The dimensional argument for the viscous ���0� GOY
shell model, which is also applicable to the sabra model,
indicates that in the “three dimensional” parameters regime
−1�

c
a �0 the velocity field scales like

��un�� � kn
−1/3�1+log��a/c��,

at the inertial range �see �10��. Therefore at least for the
parameters regime satisfying


 c

a

 � �−2, �50�

we might expect the blow-up of the inviscid sabra �as well as
GOY� shell model of turbulence.

We would like to mention that the techniques used to
prove the blow-up for other discrete models of Euler equa-
tions �see, e.g., �18–21,36�� could not be applied directly in
the case of the sabra shell model of turbulence. The study of
possible loss of regularity of the inviscid sabra shell model in
different parameters regime is the subject of ongoing work
��28��.
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